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In previous publications we have shown that chiral
O-alkyl enol ethers undergo clean, diastereofacially selec-
tive 2 + 2 cycloaddition with dichloroketene to provide
R,R-dichlorocyclobutanones.1 These 4-membered car-
bocycles, in transformations driven by inherent ring stain
and favorable electronic effects, can then be converted
rapidly and efficiently with diazomethane and m-chlo-
roperbenzoic acid to R,R-dichlorocyclopentanones and R,R-
dichloro-γ-butyrolactones, respectively (eq 1, X ) CH2,O).2
These in turn have proven to be valuable substrates for
the preparation of several natural products in native
form.1b-e

It was felt that these same R,R-dichlorocyclobutanones
might also allow access to γ-lactams (X ) NH) and hence
offer a novel entry to not only enantiopure γ-amino acid,
but also pyrrolidine, pyrrolizidine, and indolizidine natu-
ral products.3,4 The first example of the use of dichlo-
roketene-chiral olefin diastereofacial differentiation for
the enantioselective construction of a γ-lactam and its
conversion to the novel amino acid statine are now
reported (eq 2).
With the ultimate goal of a broad approach in mind,

1-(2,4,6-triisopropylphenyl)ethanol (2), a chiral benzylic
alcohol auxiliary recently developed and used effectively
in our laboratory for the synthesis of several natural
â-hydroxy-γ-butyrolactones,1e was selected as the control

element. This choice was based on the expectation that
reduction of the intermediate R,R-dichloropyrrolidinones
would occur without concomitant auxiliary elimination,
in parallel with the behavior of most of the R,R-dichloro-
γ-butyrolactones that have been studied to date.1e This
would then give access, through benzylic cleavage, not
only to â-hydroxy-γ-lactams, but potentially to a variety
of others as well.3
Conversion of (R)-1-(2,4,6-triisopropylphenyl)ethanol

(2)5 to ynol ether 3a using our published procedure6 was
initially compromised by the reluctance of the acetylide
to undergo alkylation with isobutyl iodide at low tem-
perature, which was essential to prevent decomposition
of this sensitive intermediate. Fortunately, however, the
corresponding triflate7 was sufficiently reactive at low
temperature and produced the crystalline ynol ether 3a
in 61% yield after dry silica gel chromatography8 (Scheme
1). Semihydrogenation of the triple bond in ynol ether
3a in pyridine with palladium on barium sulfate6b then
smoothly afforded the chiral Z-enol ether 3b in 93% yield.
It is noteworthy that in this conversion the formation of
over-reduced and/or hydrogenolyzed material was not
encountered.
The reaction of dichloroketene9 with 3b was found to

proceed best at 0 °C and resulted in clean, diastereose-
lective cycloaddition to afford the dichlorocyclobutanone
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4. Proton NMR of the crude reaction product indicated
that a most pleasing 94:6 ratio of diastereomeric cyclo-
adducts had been reached in this reaction. Molecular
mechanics calculations clearly showed that cycloaddition
should in fact take place selectively on the CR-si face to
generate 4 as the major product. The correctness of this
prediction was eventually borne out.
In that all attempts to purify 4 led to unacceptable loss

of material, the diastereomeric upgrading was tempo-
rarily postponed and the key conversion to the γ-lactam
was examined. Remarkably, Beckmann ring expansion
of cyclobutanone 4 with Tamura’s reagent (O-(mesityle-
nesulfonyl)hydroxylamine)10 proceeded without apparent
side reactions, in spite of the dense substitution and
sensitive nature of the molecule, to give regioselectively
crude R,R-dichloro-γ-lactam 5a as an oil. On brief
exposure at ambient temperature to excess zinc-copper
couple in methanol saturated with ammonium chloride,11
this material, as had been predicted, suffered reduction

without concomitant elimination of the inductor to pro-
vide γ-lactam 5b.12 On simple recrystallization from
methanol-water, this substance efficiently yielded highly
crystalline, diastereomerically pure lactam 5b (40% from
3b, 74%/step).
As an initial application of this approach, lactam 5b

was converted to the hydroxy amino acid statine, a key
component of several acid protease inhibitors and thus
of considerable medicinal interest.13 Many of the re-
ported syntheses of this unusual amino acid, however,
fail to yield stereochemically pure material. After some
experimentation, it was found that one-pot inductor
cleavage-ring opening could be effected by simply stir-
ring lactam 5b with trifluoroacetic acid1e at 20 °C for a
short period followed by addition of concentrated hydro-
chloric acid and heating.3b Ion-exchange column chro-
matography of the resulting salt then afforded (3S,4S)-
statine, identified through comparison with the naturally
derived material.
In summary, it has been demonstrated that cycload-

dition of chiral enol ethers with dichloroketene coupled
with the Beckmann ring expansion can provide an
effective, stereocontrolled approach to chiral pyrrolidi-
nones. While in the present instance this method has
been used to prepare a natural â-hydroxy-γ-amino acid,
we expect it will also find application in pyrrolidine,
pyrrolizidine, and indolizidine natural product synthesis.
This possibility is currently under study.
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Scheme 1a

a Key: (a) (1) KH, THF, 20 °C; Cl2CdCHCl, -50 f 15 °C, 81%;
(2) C4H9Li, THF, -85 f -40 °C; isobutyl triflate, THF, -28 °C,
75%; (b) 10% Pd/BaSO4, H2, C5H5N, 93%; (c) Cl3CCOCl, Zn-Cu,
(C2H5)2O, 0 °C; (d) NH2OSO2C6H2(CH3)3, CH2Cl2, 20 °C; Al2O3;
(e) Zn-Cu, CH3OH-NH4Cl, 20 °C, 40% (three steps); (f) CF3CO2H,
20 °C; concd HCl, 80 °C; Dowex H+, 60%.
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